
Proceedings of the 1996 Winter Simulation Conference

ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

DISCRETE EVENT SIMULATION ON THE WORLD WIDE WEB USING JAVA

Arnold H. Buss

Kirk A. Stork

Operations Research Department

Naval Postgraduate School

Monterey, CA 93943-5000, U.S.A.

ABSTRACT

This paper introduces Simkit, a small set of Java

classes for creating discrete event simulation models.

Simkit may be used to either implement stand-alone

models or Web page applets. Exploiting network ca-

pabilities of Java, the lingua franca of the World Wide

Web (WWW), Simkit models can easily be imple-

mented as applets and executed in a Web browser.

Java’s graphical capabilities enable the rapid devel-

opment of intuitive user interfaces. Java’s use of in-

terpreted bytecodes, while imposing a performance

penalty, enable development of platform-independent

models. The language’s inherent internet-awareness

make other possibilities, such as distributed simula-

tion, much easier to implement.

1 INTRODUCTION

The Naval Postgraduate School Simkit was developed

to provide simple simulation tools in an object ori-

ented computer language supported on a wide vari-

ety of computing hardware. The goal was to provide

simulation tools for the analyst and researcher that:

●

●

●

●

●

●

●

●

are accessible to analysts without professional

programming skills.

are reliable enough for moderately sized projects.

are capable enough for real problems.

are conducive to rapid development of ex-
ploratory models.

are low cost in money, programmer time and re-

sources.

promote code sharing and reuse.

promote model sharing and reuse.

allow for exploration of advanced simulat ion con-

cepts, such as distributed simulation and remote

entities

780

Examination of these objectives lead to the rejec-

tion of specialized high level languages that are typ-

ically expensive and require a workstation to run.

General high level languages were explored in search

of an accessible, available object oriented language,

resulting in the selection of Java over other prime

candidates such as Objective C, C++, Smalltalk and

others. Perhaps most import ant, Java’s internet ca-

pabilities make it the only candidate capable of cre-

ating simulation models that can be run on the Web

itself.

The WWW presents many new possibilities for cre-

ation, distribution, and execution of simulation mod-

els (indeed, of all computer models). Some of the

potential uses include the following.

Models can be created and posted to a Web site so

any user with a Java-enabled browser can execute the

model. Since the browser executes compiled (byte-

code) classes, the source coded need not be revealed.

Java capable browsers, such as Netscape Navigator

2.0 and Microsoft Internet Explorer 3.o, are becom-

ing the standard, so such simulation models will be

widely available for use.

With the wider distribution of running models, a

substantially larger potential user base exists. The

useful feedback from this user base could be orders of

magnitude larger than possible with traditional meth-

ods of model distribution.

Modelers at different locations can develop parts of

the same project and post their classes for the other
members of the team. With Java’s ability to import

remote classes, new subproject classes could rapidly

be created to interface with existing classes. Since the

classes themselves, rather than a copy, would be used
by the other team members for testing their code,

the likelihood of errors creeping in by noisy copies is

reduced. Posting compiled bytecodes also helps the

reliability of the overall project. By accelerating the

availability of prototype classes to the project, the

entire project could become more robust as well as

Discrete-Event Simulation on the World Wide Web Using Java 781

more timely.

Finally, Javasim supports the possibility of dis-

tributed simulation through Java’s built-in internet

awareness. Simulation models my be executed re-

motely, with different parts executing on machines

that could be anywhere. I%rthermore, even the

client/server structure typically necessary for proper

synchronization is also easily implemented in Java it-

self.

The remainder of this paper is organized as follows.

In the next section we will give a brief overview of the

Java language with emphasis on features that are key

to Javasim. Next, we discuss Object-oriented design

as applied to simulation programming. Section 4 de-

scribes the Sirnkit hierarchy and Section 5 illustrates

its use in a simulation applet. Finally, conclusions

and directions of future research are presented.

2 JAVA

The hype surrounding the Java language gives a ca-

sual observer the impression that it is only suitable

for writing animated “applets,” small programs that

typically have cute but inconsequential animations.

The explosion of such applets on the WWW, together

with Java capability of the major Web browsers, sup-

port the notion that Java is not a “serious” language.

In fact, Java is a powerful, well-designed language

that is an excellent platform for developing complex,

object-oriented applications.

Even a modestly comprehensive description of the

Java language is obviously beyond the scope of this

paper; for an excellent overview, see Cornell and

Horstman (1996). However, several properties of Java

made it the ideal platform for Simkit, as discussed

above.

Java supports most of the language features for
object-oriented programming, including classes, en-

capsulation, polymorphism, and inheritance. Un-

like C++, Java does not support multiple inheri-

tance, but rather borrows the protocol concept from

Objective-C, called an “interface” in Java. An inter-

face is simply the promise that a given class will im-

plement a specified list of methods. Use of interfaces

gives the modeler much more flexibility for extensions

to base functionality than inheritance without giving

up any power. Indeed, without interfaces the only

way to combine different groups of method specifi-

cations is through multiple inheritance. It turns out

that multiple inheritance is far too restrictive, partic-

ularly for the kind of flexibility required in simulation

modeling. Interfaces are a critical feature in Javasim,

and most of the basic abstract functionality are de-

fined in interfaces (see Section 4).

3 DESIGN CONSIDERATIONS

There is considerable difference between program-

ming in an Object-Oriented (OO)language a,nd utiliz-

ing Object-Oriented design concepts (Bootch, 1996).

Although an 00 language may support 00 design,

it does not guarantee it. The design view we take
is along the lines of Cox’s concept of the “Soft-

ware Integrated Circuit” (Cox, 1986). Cox’s “soft-

ware IC” concept. The fundamental components

for a simulation software IC are those of the Event

Graph (Schruben, 1995).

In designing Simkit, we attempted to break the act

of creating a simulation model into its fundamental

functional components. By utilizing available mod-

ules that provided functionality, such as Doug Lea’s

public-domain collections classes, we maintained a

certain degree of modularity on the project.

A simulation language typically takes a certain

“World View,” the lens through which the under-

lying modeling paradigm views the model land-

scape. Major world views include Next-Event,

Process/Resource Interaction, and Activity Scan-

ning (Law and Kelton, 1991). The Process world view

appears to be the most common among commercial

languages (GPSS, SIMAN, SIMSCRIPT, etc). Imple-

mentations of the Process view involve an Event List

operating in the background. Thus, while the user

creates the model using high-level block diagrams,

the language translates the resulting structure into

a Discrete-Event model.

The Process world view allows the modeler to op-

erate at a relatively high level of modeling. Rela-

tively straight forward queueing-oriented models are

easy to create and run. However, even modest depar-

tures from queueing models forces the modeler out

of the pre-constructed blocks. Commercially avail-

able languages typically force the user to implement

user-defined blocks in conventional programming lan-

guages, such as C or Fortran.

The design objective for SirnW was to achieve as

much modeling ease as possible by enabling the con-

struction of resident entities and blocklng resources,
while allowing the user to customize at a higher

level than conventional programming. The latter was

accomplished by incorporating a Discrete-Event ap-

proach based Lee Schruben’s Event Graphs (1983,

1995). Thus, the user of Sirnldt has the choice

of implementing a model using a Process orienta-

tion, a Discrete-Event Orientation, or some combina-
tion. The use of Event Graphs to create customized

“blocks” is a powerful modeling capability.

782

4 OVERVIEW OF Simkit

Buss and Stork

4.1 Collections and G2d

The collections package, generously contributed to

Simkit consists of a programming class library for dis-

crete event simulation written in the Java computer

language. Sirnkit provides general code for simulation

and contains specific code providing modeling capa-

bilities of interest to the military analyst. We will

addresses only the general simulation tools provided

Simkit, with primary emphasis on Javasim, the core

of Simkit.

Simkit consists of three Java packages, each con-

taining a set of related classes that work together to

provide functionality in a key area to support the

model. Graphical User Interface elements are pro-

vided by the classes in the awt package. Utilities,

such as data structures, random variate generation,

and statistics collection, are implemented in the util

classes. Event-driven simulation is facilitated by the

classes in the Javasim paclmge. The packages form

a hierarchy, much like a class inherit ante hierarchy,

which is shown as a directed acyclic graph in Figure 1.

The Mil package is an extension to Javasim that

provides tools for building simulation models with

particular application to military problems. In addi-

tion to the intrinsic interest in such models, Mil can

be seen as a prototype that demonstrates the exten-

sibility of Javasim. The design of Javasim enables

modelers to extend the language itself to incorpo-
ratee their particular needs. This extensibility y makes

Javasim an attractive alternative to special-purpose

simulation languages which tend to be more restric-

tive.

“-”nutil

Figure 1:

Classes in one

packages. In fact,

hmil

Simkit Package Hierarchy

package can use classes in other

Javasim relies on classes in each

of the other packages, each providing a distinct set
of services to the programmer. We will now briefly

describe each package. In the spirit of 00 design, we

have utilized existing classes to as great extent as pos-

sible, specifically the Collections and g2d packages.

the public domain by Doug Lea, provides a very com-

plete set of data structures. This package is com-

pletely independent of Simkit and is useful in many

contexts. Sir&it uses collections for most of its data

structure needs. Complete documentation for collec-

tions is provided with the source code distribution

available on the internet.

Charting capabilities are provided by the g2d

(Graphics, 2-dimensional) package. Minor modifica-

tions were made to the original Graph2D classes pro-

vided by Leigh Brookshaw to give them their own

identity and to simplify the programming interface

for Simkit. The package itself is quite complete, and

can be used independently of SirrM. Document ation

for the original Graph2D is included with the source

code distribution on the internet. The modified code

making up the g2d package as shown here is also avail-

able on the internet, but the changes are slight. We

recommend getting the most recent source code from

the original author for uses other than Simkit. While

not in the public domain, the g2d package is covered

by the GNU General Public License (1991).

4.2 Awt

The classes in the awt package provide a limited set

of pre-built graphical user interface elements used by

Javasim. The main features of awt include simple

windows to display tables and graphs. Awt relies

on g2d for its lower-level functions. Several classes

originally presented in the book Core Java (Cornell

and Horstman, 1996) are used to provide formatted

number output and self verifying text input boxes.

4.3 Util

The util package contains classes that give support

functionality to the simulation model. These include

data collection, random variate generation, and data

structures that gather summary statistics on usage.

4.4 Javasim

Javasim is the core of Simkit and provides all the gen-

eral discrete-event simulation facilities in Simkit. Al-

though incomplete in comparison to commercial sim-

ulation environments, Javasim provides the most of

the needed functionality for simulation modeling.

The structure of Javasim is shown in Figure 2.

There are three main layers to the overall design: The

core Javasim classes, an Extension layer, and a User

layer. As Figure 2 indicates, Javasim consists of two

Discrete-Event Simulation on the World Wide Web Using Java 783

javasim

Interruptible

SimEvent

ResourceReauest ResourceReauestlmri I
\ / I 1

ResourceUserlmpl

ResourceOwnerlmpl

- -

r ------ -- t
~ SimTimeValue I s-l-v.------ --’ I

Abstract Layer Implementation Layer

_ Implements 1.---. ---,”

------- ---
~ Abstract Class I Class

Extends

Figure 2: Javasim Design

components: an “Abstract” layer and an “lmplemen- together implement the concept of blocking resources,

tation” layer. The Abstract layer defines function-

ality most ly through Java Interfaces. Each interface

only provides a list of methods that are to be imple-

mented by classes in the Implementation layer. The

relationship between interfaces and the classes that

implement them is much weaker than the inheritance

relationship. Specifically, a class which implements

an interface does not have an “is-a” relationship to

the interface. Rather, the class simply promises that

it will have the interface’s methods in some manner.

Interfaces are thus identical to Objective-C protocols.

The one “Abstract” class, SimTimeValue, provides

the timekeeping in a robust manner.

The basic discrete event framework in Javasim is

provided by the Timemaster class, which manages

the event list. The execution and scheduling of events

is done by the SimEvent and SimEntityImp classes,

respectively. The Interruptable interface allows the

possibility of events being cancelled. The STV class

implements simulated time. These classes are suffi-

cient to create any discrete-event simulation models.

The remaining three classes, ResourceReques-

tImpl, ResourceUserImpl, and ResourceOwnerImpl,

— ..
allowing some degree of creating Process/Resource

models with Simkit.

Using interfaces rather than an inheritance hierar-

chy allows Javasim to easily incorporate the Exten-

sion Layer. While a modeler will not change anything

in Javasim itself, there may still be a need for special-

purpose, customized tools. For example, the Mil ex-

tension supports the ability for the modeller to easily

create such entities as ships, airplanes, submarines,

etc. Furthermore, such interactions between model

entities, such as sensing and detection, can be cre-

ated as as part of the language itself by use of the

extension layer.

4.5 Mil

Mil is a simulation framework for simulating scenarios

of interest to military analysts. In addition to being

an example for the Extension layer of Simkit, Mil

provides functionality for such military applications

as ship-missile defense (Stork, 1996).

784 Buss and Stork

5 EXAMPLE

Figure 3: Output of MMn Applet

We illustrate a model in Sirnkit with the simple
M/M/n queue as an applet. A screen shot of the ap-

plet running in Netscape is shown in Figure 3. The

user interface is easily implemented and allows pa-

rameter input from text boxes and execution with a

simple button. Check boxes allow the user to decide

at run time to display choices of summary statistics

and graphs of output.

To illustrate how Simkit is be used for a Pro-

cess/Resource view of the model, we show the source

code for the ResCustomer class below.

class ResCustomer extends ResourceUserImpl {
private double myServiceDelay;
private Time myServiceRequestTime;
private ResourceOwnerImpl myServer;
private Histogram delayStat;

private double meanST;

public void setServiceTime(double d) {

myServiceDelay = d;

}

public void getService(

ResourceOwnerImpl server,

Histogram reportTo) {

myServer = server;

delayStat = reportTo;

myServiceRequestTime = TimeMaster.SimTimeo;

getResources(myServer, IL);

3

public void receiveResources(

ResourceRequest res){
super.receiveResources (res);

delayStat.getSample (

((TimeMaster.SimTimeo).valueo)” -

Discrete-Event Simulation on the World Wide Web Using Java 785

(myServiceRequestTime .valueo));

ResEndService e = new ResEndService(this);

e.waitDelay(new Time(myServiceDelay));

}

public void doEndServiceo {

returnResources (myServer);

3

// END CLASS Customer

The ResCustomer class provides the core function-

ality of the model. The methods are mostly self-

explanatory, representing the customer requesting

and subsequently receiving the server resource, wait-

ingforthe service time, and relinquishing the server.

This class also illustrates the use of the Time class

wrapper. All variables representing time in Simkit

are declared to be an instance of Time. This ab-

straction ofthe concept ofa time adds robustnessto

Simldt models.

6 CONCLUSIONS

Simkit is a class library written in Java that provides

core functionality for the creation of simulation mod-

els. While relatively small, Simkit is nevertheless is

sufficiently powerful for many modeling needs. Its

user layer allows Simkit to be used as-is for creating

simulations, and its extension layer allows language

extensions at a level substantially higher than base-

level code. Unique network-capable features of Java

can be exploited to enable straightforward implemen-

tation of simulation applets and distributed models.

ACKNOWLEDGEMENTS

Support for this work from the Naval Postgraduate

School is gratefully acknowledged. Portions of this

work were part of the second author’s Masters Thesis

in Operations Research at the Naval Postgraduate

School.

REFERENCES

Bootch, G. 1996. Object Solutions: Managing the

Object-Oriented Project, Addison-Wesley, NY.

Cornell, G. and C. Horstman. 1996. Core Java, Sun-

soft Press, Mountain View, CA.

Cox, B. 1986. Object-Oriented Programming: An

Evolutionary Approach, Addison-Wesley, NY.

Flanagan, D. 1996. Java in a Nutshell, O’Reilly &

Associates, Inc., Sebastopol, CA.
GNU General Public Licer,se. 1991. The Free Soft-

ware Foundation, Cambri-ige, MA.

Law, A. and D. Kelton. 1991. Simulation ModeJing

and Analysis, Second Edition, McGraw-Hill, NY.

Schruben, L. 1983. Simulation Modeling with Event

Graphs, Communications of the ACM, 26, 957-

963.

Schruben, Lee. 1995. Graphical Simulation Modeling

and Analysis Using Sigma for Windows, Boyd and
Fraser Publishing Company, Danvers, MA.

Stork, K. 1996. A Simulation Study of Countermea-

sure Effectiveness Against Anti-Ship Missiles. Mas-

ters Thesis, Department of Operations Research,

Naval Postgraduate School, Monterey, CA.

AUTHORS BIOGRAPHIES

ARNOLD BUSS is a Visiting Assistant Profes-

sor of Operations Research at the Naval Graduate

School. He received his PhD in Operations Re-

search from Cornell University, and is a member of
INFORMS, IIE, POMS, and MORS. His research

interests include Object-Oriented simulation model-

ing, manufacturing applications, and project manage-

ment.

KIRK STORK is a Lieutenant in the United States

Navy. After enlisting in 1981 and completing the

Navy’s Nuclear Power Training, he attended the Uni-

versity of Washington and obtained his I%SE and a

commission in the Navy in 1989. He received his

MSOR at the Naval Postgraduate School and is cur-

rent ly attending the Navy’s Submarine Officer’s Ad-

vanced Course in Groton, CT.

